
Homework problems for Kachru lectures, IAS, Summer 2006

1. Estimate the scaling of the flux potential for moduli with the overall radius of the

Calabi-Yau space R, in the IIB theory with three-form fluxes turned on. To do this,

you simply need to consider the reduction of G3 · G3 to 4d Einstein frame. What is the

scaling of the resulting moduli masses with 1/R? (Remember that the moduli arise as

components of the 10d metric). What are the implications of this result for the validity of

using a 4d supersymmetric effective field theory for the moduli below the KK scale, without

worrying about KK modes and string modes? If you have trouble, see e.g. (3.3)-(3.9) of

hep-th/0601111, or hep-th/0405068.

2. In lecture, we found that in the leading approximation, the volume modulus remains

a flat direction in IIB Calabi-Yau flux vacua. This problem will explore one possible way

(following the paper hep-th/0301240) that the degeneracy can be lifted by corrections to

the leading approximation.

Assume that there is a non-perturbative correction to W that depends on ρ. To

leading order, W was given by Wflux which takes some definite value W0 in the vacuum

for the complex moduli zα and the dilaton τ . The Kähler mode ρ remains massless, while

zα and τ have masses of scale m∗ that you estimated in problem 1. The appropriate

low-energy effective theory at energies below the scale m∗ just includes ρ, with the other

moduli integrated out. The full superpotential takes the form

W = W0 + Aeiaρ.

For the purposes of this problem, you can assume W0 is a control parameter that can

be dialed to have |W0| << 1, and A, a are numbers of O(1) (e.g. a ∼ 1/N for gaugino

condensation in an SU(N) pure N = 1 gauge theory).

a) Using the superpotential above, and the leading order Kähler potential, show that this

system has a vacuum with ρ stabilized.

b) Further non-perturbative effects could yield further corrections of the form Bei2aρ to

W . In the small W0 regime, are these corrections important or sub-dominant around the

leading order vacuum you exhibited in a)? You should estimate this by keeping track

of your solution parametrically in W0, and checking whether the corrections are formally

larger or smaller in the expansion in small W0.
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c) One expects perturbative corrections to the Kähler potential as well. Suppose K is

corrected to the form

K(ρ, ρ̄) = −3log[−i(ρ − ρ̄) + c] +
d

(ρ − ρ̄)
+ · · ·

where c, d are again constants which are ≤ O(1). By Taylor expanding the resulting

corrections to V around the vacuum a), demonstrate that these corrections are expected

to be small in the small W0 limit.

Note that in all cases, the corrections may lead to global features of V which appear quite

distinct from the leading approximation; the important question you are examining here

is whether these corrections are important near the approximate vacuum of a) or not.

3. a) In the problem above, small values of the R-symmetry breaking order parameter W

play an important role. In Nature, if supersymmetry is relevant at the electroweak scale,

it is broken by an F-term which is either F ∼ (1011 GeV)2 (gravity mediation) or F <<

(1011 GeV)2 (gauge mediation), with values in the latter case as low as F ∼ (50 TeV)2

being plausible. Take these as the highest and lowest plausible SUSY-breaking F-terms in

a nice, supersymmetric world. Using the fact that in supergravity

V ∼

(

|DW |2 − 3
|W |2

M2

P

)

and that the observed vacuum energy is quite small, estimate the rough magnitude of

the dimensionless quantity W/M 3

P in vacuum, for vanilla gravity and gauge mediation

scenarios. (You do not need to assume that W cancels the F-term energy to some ridiculous

number of decimal places; an estimate using the leading decimal place will suffice). This

provides a “bottom up” motivation to think about vacua with small values of |W |.

b) Find a class of IIB flux vacua (in compact models, i.e. where the dilaton is dynamical)

where the superpotential is generic enough to stabilize all complex moduli, and where

the value of W in vacuum is exponentially small but nonzero. This is publishable if you

succeed! Existing constructions of very small W vacua either use tuning in flux-space, or

only apply to non-compact Calabi-Yau spaces. But because W is the order parameter for

R-symmetry breaking, it would be “natural” for such models to exist in the compact case

as well.

4. In compactifications of the heterotic string theory on a Calabi-Yau manifold, one has a

single real three-form flux H3 (arising in the NS sector), which can be turned on. Except
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in special circumstances, it obeys an integral flux quantization condition analogous to its

IIB counterparts, and gives rise to a flux superpotential

Wflux =

∫

M

H3 ∧ Ω .

In the IIB theory, an important role is played by flux vacua where Wflux evaluated in

the vacuum for complex structure moduli, is small. Do you expect such configurations

to be attainable for the heterotic flux superpotential described above? Why or why not?

Generalizations of this structure, involving “geometric fluxes” which describe heterotic

strings on non-Kähler manifolds, probably make the story more analogous to the IIB one.

5. In the lectures, we mostly focused on IIB models. In this problem, you will work out

part of the story for IIA models based on Calabi-Yau compactification. It differs from the

IIB story in interesting ways (remember, the IIB and IIA Calabi-Yau flux models are not

mirror to one another). You will basically be deriving the results of hep-th/0505160 by

DeWolfe et al, without all of the excess mathematical baggage.

a) In IIA compactification on a Calabi-Yau space M , you can turn on RR fluxes of all even

dimensions (F0,2,4,6), and NS three-form flux H3. Another important ingredient in the

potential energy function for the compactification arises from the presence of O6 planes

wrapping 3-cycles in M . Let us imagine the only relevant moduli are the Calabi-Yau radius

R and the dilaton gs = eφ. Derive the scaling of the 4d Einstein frame energy densities

due to F0,2,4,6, H3, and O6 planes as a function of eφ and R.

b) In models with some given O6 charge, one must either cancel the tadpole by including

D6 branes, or by using the fact that F0 ∧ H3 contributes to the same tadpole. Consider

a model with O(1) units of O6 charge, where the tadpole is cancelled with O(1) units of

F0 and H3 flux. In addition, turn on N units of F4 flux (this is not constrained by any

tadpole condition). The resulting potential takes the schematic form

V =
e2φ

R12
+ N2

e4φ

R18
+

e4φ

R6
−

e3φ

R9
.

Show that for N >> 1, this potential has vacua with gs and R stabilized. Demonstrate

by finding the N -scaling of the stabilized values, that one can make vacua with arbitrarily

weak coupling and large volume.

c) In Freund-Rubin models AdSd × Sp, one cannot strictly speaking use d-dimensional

effective field theory to analyze the low-energy physics. This is because the AdS curvature
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radius and the KK scale are parametrically the same. Is 4d effective field theory applicable

to the models discussed above?

d) Full string constructions along these lines exist, with the relation between the AdS

curvature and KK scale that you found in c). Find the 3d conformal field theories dual to

these AdS4 solutions. (This is very publishable if you succeed in any example!)
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