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1 On the Bousso-Polchinski Mechanism for Obtaining a Small
Cosmological Constant

Problem

A solution of the cosmological constant problem in the Bousso-Polchinski framework re-
quires that

0 < λ = −|λbare|+
1
2

J∑
i=1

n2
i q

2
i < ∆λ ∼ 10−120 , (1)

where |λbare| is the bare cosmological constant, J is the number of fluxes, and qi is the size
of the individual flux quanta which are labeled by incommensurate integers ni.

1. For λbare ∼ O(M4
P ) ≡ 1 and J ∼ O(100) find the limit on the typical size q of the

flux quanta.

2. For λbare ∼ O(M4
P ) ≡ 1 and qi ≡ q ∼ O(0.1), find the minimal value of J for which

there exists a set of ni such that

λ < ∆λ ∼ 10−120 . (2)

Solution

First, notice that equation (1) can be written as

2|λbare| <
J∑

i=1

n2
i q

2
i < 2|λbare|

(
1 +

∆λ

2|λbare|

)
(3)
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This constraint can be visualized in terms of a J-dimensional grid of points, spaced by
the size of the flux quanta qi and labeled by incommensurate integers ni (see Figure 1).
Consider a sphere of radius

r = |2λbare|1/2 (4)

centered at ni = 0. If one of the points (n1, n2, . . . , nJ) is sufficently close to the sphere,
the field configuration corresponding to this point will lead to an acceptable value of the
cosmological constant. More precisely, one should think of a thin shell, whose width encodes
the width of the observational range

∆r =
1
2
|2λbare|−1/2∆λ . (5)

Equation (5) follows from equation (3) and the binomial expansion(
1 +

∆λ

2|λbare|

)1/2

≈ 1 +
1
2

∆λ

|2λbare|
. (6)

n q

n q

2 2

1 1

q2

q1

r Δr

Figure 1: Visualization of the Bousso-Polchinski mechanism for solving the cosmological
constant problem.

To solve the CC problem we need at least one point to lie within the shell. The volume
per grid point is

Vgrid−point =
J∏

i=1

qi ∼ qJ (7)
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where q is the typical size of each flux quantum. Compare this to the volume of the shell

Vshell = ωJ−1r
J−1∆r =

ωJ−1

2
|2λbare|

J
2
−1∆λ (8)

where we defined ωJ−1 ≡ 2πJ/2/Γ(J/2) as the area of (J − 1)-dimensional unit sphere. We
require

Vgrid−point < Vshell (9)

or
2

ωJ−1

(
q

|2λbare|1/2

)J

<
∆λ

|2λbare|
. (10)

We are now in the position to answer the two questions posed in the problem:

1. Setting |2λbare| ∼ O(1) and J ∼ O(100) equation (10) implies

q <
(ω99

2
∆λ

)1/100
≈ 10−0.6 = 0.03 . (11)

Notice that the charges qi ∼ q need not be exceedingly small if there are many fluxes.
In order to achieve a small λ, it is sufficient that there be a discrepancy between the
magnitude of λbare and that of the charges. For fixed charges, the task of cancellation
actually becomes easier, the larger the bare cosmological constant. To understand
this consider Figure 2: the larger the shell, the more points it will contain.

2. Setting |2λbare| ∼ O(1) and q ∼ O(0.1) equation (10) implies

λ(J) ≡ 10−J

πJ/2/Γ(J/2)
< ∆λ ∼ 10−120 . (12)

Since we are only interested in an order of magnitude solution, a graphical solution
of the inequality (12) seems sufficient.1 Using Mathematica we plot log[λ(J)] vs. J
(see Figure 3). We find

log[λ(J)] < −120 ⇔ J > 350 . (13)

1Notice that we didn’t pay careful attention to numerical factors to begin with, so being overly picky
now probably wouldn’t make much sense. Nevertheless, purists could try to find an approximate analytical
solution by using Stirling’s approximation for ln Γ(J/2).
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Figure 2: Graphical solution of the inequality (12) .

2 Running Coupling Constant and Dimensional Transmuta-
tion

Problem

Consider a SU(Nc) gauge theory that couples to Nf fermions. Suppose that at the Planck
scale the coupling constant is gP . Use the 1-loop approximation to the β-function to find
the strong coupling scale Λ associated with this gauge group. Under which conditions is it
exponentially small relative to the Planck scale?

Solution

We summarize the discussion on renormalization group flow and the 1-loop β-function of
Chapters 16 and 17 in Peskin and Schroeder [2].

The coupling constant αs must be defined at some renormalization point M . The
running coupling coupling

αs(Q) =
g2(Q)

4π
(14)

depends on the energy scale Q at which it is measured. The coupling constant g is defined
to satisfy the renormalization group equation

d

d log(Q/M)
g = β(g,Nc, Nf ) (15)
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with initial condition αs(M) = αs. For a SU(Nc) gauge theory coupled to Nf approx-
imately massless fermions in the fundamental representation, the β-function is given by
(see Chapter 16 of [2])

β(g) = − b0g
3

(4π)2
, with b0 ≡

11
3

Nc −
2
3
Nf . (16)

Notice the all-important minus sign (indicating asymptotic freedom for small Nf ) and the
g3-scaling. Then the solution of the renormalization group equation (15) is

αs(Q) =
αs

1 + (b0αs/2π) log(Q/M)
. (17)

Because the fixed coupling αs depends on the arbitrary renormalization point M , it is
useful to remove it from the formula completely. To do this we define a mass scale Λ
satisfying

1 ≡ αs
b0

2π
log(M/Λ) . (18)
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Figure 3: Running coupling constant.

Equation (17) can then be written as

αs(Q) =
2π

b0 log(Q/Λ)
. (19)

αs(Q) decreases as (log(Q))−1 for large energies Q. Evaluating this at Q = MP and
rearranging we find

Λ = exp
[
− 8π2

g2
P b0

]
×MP , (20)
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where gP ≡ gP (Q = MP ). This shows that the strong coupling scale Λ depends exponen-
tially on the gauge coupling at the Planck scale gP , i.e. the exponential hierachy between
the strong coupling scale Λ and the Planck scale MP requires only a moderate ratio between
the running values of the coupling constants at those scales. Finally, we observe from (20)
that an exponential hierarchy is also generated by a small value of b0, i.e. 11Nc ∼ 2Nf .
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