Problem Set for lectures "Integrability in AdS/CFT", PiTP 2006, Niklas Beisert

Note: It is not necessary to solve all parts of the problems. Do as much as you can and enjoy; latter parts tend to be more challenging.

I. Spinning Strings

Introduction: Bosonic strings on $A d S_{5} \times S^{5}$ can be expressed using the fields $\vec{X}(\sigma, \tau) \in \mathbb{R}^{6}$ and $\vec{Y}(\sigma, \tau) \in \mathbb{R}^{2,4}$ with $\vec{X}^{2}=\vec{Y}^{2}=1$. The equations of motion read

$$
\vec{X}^{\prime \prime}-\ddot{\vec{X}}=\vec{X}\left(\vec{X} \cdot \vec{X}^{\prime \prime}-\vec{X} \cdot \ddot{\vec{X}}\right), \quad \vec{Y}^{\prime \prime}-\ddot{\vec{Y}}=\vec{Y}\left(\vec{Y} \cdot \vec{Y}^{\prime \prime}-\vec{Y} \cdot \ddot{\vec{Y}}\right)
$$

and the Virasoro constraints are given by

$$
\vec{X}^{\prime} \cdot \dot{\vec{X}}=\vec{Y}^{\prime} \cdot \dot{\vec{Y}}, \quad\left(\vec{X}^{\prime}\right)^{2}+(\dot{\vec{X}})^{2}=\left(\vec{Y}^{\prime}\right)^{2}+(\dot{\vec{Y}})^{2}
$$

The spins for rotation in the a, b-plane of \mathbb{R}^{6} and $\mathbb{R}^{2,4}$ are given by

$$
J_{a b}=\frac{\sqrt{\lambda}}{2 \pi} \oint\left(X_{a} \dot{X}_{b}-X_{b} \dot{X}_{a}\right) d \sigma, \quad S_{a b}=\frac{\sqrt{\lambda}}{2 \pi} \oint\left(Y_{a} \dot{Y}_{b}-Y_{b} \dot{Y}_{a}\right) d \sigma
$$

Problem: Derive the energy and spin a spinning string using the following ansatz on $\mathbb{R} \times S^{3}$

$$
\vec{X}(\sigma, \tau)=\left(\begin{array}{c}
\cos \psi(\sigma) \cos \left(\omega_{1} \tau\right) \\
\cos \psi(\sigma) \sin \left(\omega_{1} \tau\right) \\
\sin \psi(\sigma) \cos \left(\omega_{2} \tau\right) \\
\sin \psi(\sigma) \sin \left(\omega_{2} \tau\right) \\
0 \\
0
\end{array}\right) \quad \vec{Y}(\sigma, \tau)=\left(\begin{array}{c}
\cos \varepsilon \tau \\
\sin \varepsilon \tau \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

a) Substitute the ansatz into the equations of motion and Virasoro contraints to obtain differential equations for the profile $\psi(\sigma)$. Show that the resulting equations are compatible, i.e. that the Virasoro constraints equal the integrated equations of motion.
b) Solve the equations of motion in the special case $\omega_{1}=\omega_{2}$. Restrict to periodic solutions with $\psi(2 \pi)=$ $\psi(0)+2 \pi m$.
c) Find the spins J_{12}, J_{34} and energy $E=S_{12}$ of the solution. Express the energy as a function of the spins.
d) If you can, repeat b) and c) for the more general case $\omega_{1} \neq \omega_{2}$ and also for folded strings with $\psi(2 \pi)=\psi(0)$.

II. Spectral Curve

Introduction: The spectral curve $p^{\prime}(x)$ for the $\mathbb{R} \times S^{3}$ sector of string theory has the following properties: The A-cycle of a cut encircles it. The B-cycle of a cut starts and ends at $x=\infty$ and passes through the cut. The A-cycle is zero and the B-cycles defines the mode number of the cut

$$
\oint_{\mathcal{A}_{k}} d p(x)=0 \quad \text { and } \quad \oint_{\mathcal{B}_{k}} d p(x)=2 \pi n_{k} .
$$

The winding number m is defined through the integral

$$
\int_{0}^{\infty} d p(x)=-2 \pi m
$$

The spins J_{12} and J_{34} can be read off from the expansion at $x=0$ and $x=\infty$

$$
p(x)=2 \pi m-\frac{2 \pi\left(J_{12}+J_{34}\right)}{\sqrt{\lambda}} x+\mathcal{O}\left(x^{2}\right) \quad \text { and } \quad p(x)=\frac{2 \pi\left(J_{12}-J_{34}\right)}{\sqrt{\lambda}} \frac{1}{x}+\mathcal{O}\left(x^{-2}\right)
$$

and the energy E from the expansion at $x= \pm 1$

$$
p=\frac{\pi E}{\sqrt{\lambda}} \frac{1}{x \mp 1}+\mathcal{O}\left((x \mp 1)^{0}\right) .
$$

Problem: Use the single-cut ansatz

$$
p^{\prime}(x)=\frac{c x^{3}+d x^{2}+e x+f}{\left(x^{2}-1\right)^{2} \sqrt{x^{2}+a x+b}}
$$

to solve for the energy of a solution with $J_{12}=J_{34}=\frac{1}{2} J$ and winding number m.
a) Use the above relations to constrain all the coefficients a, b, c, d, e, f before integrating $p^{\prime}(x)$.
b) Use the relation of the winding number m to obtain the energy as a function of J, m, λ. Compare the answer to the solution to problem I.
c) What is the mode number n associated to the cut?

III. Heisenberg Chain

Introduction: Consider the periodic Heisenberg spin chain with K up spins and $L-K$ down spins, i.e. L sites in total. The Heisenberg Hamiltonian is given by

$$
\mathcal{H}=\sum_{a=1}^{L}\left(\mathcal{I}_{a, a+1}-\mathcal{P}_{a, a+1}\right)
$$

Here $\mathcal{I}_{a, a+1}, \mathcal{P}_{a, a+1}$ are the identity and permutation operators acting on two adjacent sites a and $a+1$ (periodically identified: $L+1 \equiv 1$).

Problem: Compute the spectrum of \mathcal{H} in the cases specified below: First, enumerate all states. Second, act with \mathcal{H} on these states and thus represent it as a matrix in this basis. Finally, find the eigenvalues of this matrix.
a) Compute the spectrum for the states $L=3$ and arbitrary number of spin flips K. How do these fit into multiplets of $\mathrm{SU}(2)$?

From now on restrict to cyclic states, i.e. identify all states which are equivalent under cyclic permutations.
b) Compute the spectrum for the states $L=4, K=2$ and $L=6, K=2,3$.
c) Compute the spectrum for the states with $K=2$ and arbitrary length L.

VI. Bethe Equations

Introduction: The Bethe equations for the Heisenberg chain are

$$
\left(\frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}}\right)^{L}=\prod_{\substack{j=1 \\ j \neq k}}^{K} \frac{u_{k}-u_{j}+i}{u_{k}-u_{j}-i}, \quad \text { for } k=1, \ldots, K
$$

For each solution of these equations (with distinct u_{k}) there exist an eigenstate of the Heisenberg Hamiltonian with energy and (exponentiated) momentum

$$
E=\sum_{k=1}^{K}\left(\frac{i}{u_{k}+\frac{i}{2}}-\frac{i}{u_{k}-\frac{i}{2}}\right) \quad \text { and } \quad e^{i P}=\prod_{k=1}^{K} \frac{u_{k}+\frac{i}{2}}{u_{k}-\frac{i}{2}} .
$$

Problem: Use the Bethe equations to derive the energies of states.
a)-c) Repeat parts a) to c) of Problem III and compare the energies. Note: $u_{k}=\infty$ is allowed, even with multiplicity. Cyclic states have zero momentum. The state $L=6, K=3$ is singular, can you find it?
d) Use the BDS Bethe equations to find higher-loop corrections to scaling dimensions: Replace every instance of $u_{k} \pm \frac{i}{2}$ (on LHS of BE, in energy \& momentum) by $x\left(u_{k} \pm \frac{i}{2}\right.$) where $x(u)=\frac{1}{2} u+\frac{1}{2} u \sqrt{1-2 g^{2} / u^{2}}$. Expand the equations order by order in g^{2}.

