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1. Introduction

As we saw in lecture 1, SQCD with Nf < Nc has a dynamically generated superpo-

tential. Classically there are supersymmetric vacua for all 〈M〉. In the quantum theory,

there is no supersymmetric vacuum for any 〈M〉, except for 〈M〉 → ∞. However, this is

not considered a good theory of DSB, as there is no vacuum at all for finite 〈M〉 – there

is a tadpole, associated with the runaway potential Vdyn ∼ |W ′
dyn|2. We can stop the

runaway by lifting the classical moduli space, by adding masses for all of the flavors, via

Wtree = TrmM , with m a Nf ×Nf matrix of masses (taking all its eigenvalues to be non-

zero). But as you have seen in the exercise, the full superpotential Wfull = Wdyn +Wtree

now has Nc supersymmetric vacua.

We return to the question of interest for these lectures is “How generic is dynamical

supersymmetry breaking in the landscape of all possible susy gauge theories, and in the

landscape of string vacua. As will be reviewed, theories with no susy vacua seem to be

very non-generic. However, theories with meta-stable DSB vacua could be much more

common.

2. Dynamical SUSY breaking is non-generic

2.1. Need a Goldstino

Spontaneous SUSY breaking means there is a massless Goldstone fermion. So any

candidate theory of DSB must have such a massless fermion in its spectrum. (The goldstino

is eaten by the gravitino, which gets a mass, once gravity is included. We will not consider

gravity effects in these lectures.)

2.2. Witten Index

All SUSY gauge theories with massive, vector-like matter have Tr(−1)F 6= 0 SUSY

vacua. E.g. for SU(Nc) SYM have Tr(−1)F = Nc SUSY vacua. So for broken SUSY need

a chiral gauge theory. (We’ll review some exceptions, with massless, vector-like matter.)

1



2.3. Susy breaking is related to breaking global symmetries

Affleck, Dine, and Seiberg point out that a sufficient conditions for DSB is that

1. All non-compact flat directions are lifted (e.g. by Wtree)

2. A global symmetry is spontaneously broken, G→ H.

Point 2 means there are real massless goldstone bosons, living on the compact space

G/H. Point 1 ensures that they can’t be promoted to complex chiral superfields, so SUSY

must be broken.

2.4. DSB requires an R-symmetry, or non-generic superpotential

This was pointed out by Nelson and Seiberg. Suppose that the low-energy effective

theory can be described by a supersymmetric Wess-Zumino effective Lagrangian, without

gauge fields. This is the effective description, below the dynamical scale Λ, where the

strong gauge dynamics binds the original microscopic fields into composites. Then DSB in

the UV theory occurs if there is F-term susy breaking in this effective theory, i.e. if we can

not set all (K−1)īi(∂iW (Φi) = 0. Assuming that the Kahler metric is non-degenerate (i.e.

that the low-energy effective field theory has been properly identified), this means that we

can not solve all the equations

∂W (Φi)

∂Φi
= 0 for all i = 1 . . . n. (2.1)

But if W is the most generic superpotential, then (2.1) involves n equations for the n

quantities Φi, so generally they can all be solved. Non-R flavor symmetries do not help, e.g.

with a non-R global U(1) symmetry, the equations (2.1) can be written as n−1 independent

equations for n − 1 independent unknowns, as seen by writing W = W (ΦiΦ
−qi/qn

n ), now

for i = 1 . . . n − 1. But if there is an R-symmetry, then the equations (2.1) become over-

constrained: they are n equations for n − 1 independent unknowns, as seen by writing

W = Φ
2/rn

n f(ΦiΦ
−ri/rn

n ) now for i = 1 . . . n− 1, so generically they can not be solved.

These observations fit with what we’ve already seen for SQCD: turning on Wtree =

TrmM breaks the R-symmetry, and indeed introduces SUSY vacua.

There can still be SUSY breaking without an R-symmetry, as the superpotential can

happen to be non-generic. But it is difficult to find examples of that.

Having the R-symmetry be spontaneously broken is a sufficient condition for SUSY

breaking, as in the previous subsection.
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3. DSB is hard to analyze

Most of our techniques to analyze SUSY theories are based on holomorphy, chirality,

BPS. They do not depend on the Kahler potential, which is hard to control. But finding

SUSY breaking requires control of the Kahler potential. Also, since the vacuum is not

supersymmetric, its dependence on the parameters might not be smooth. There can be

phase transitions.

4. Examples of tree-level F-term supersymmetry breaking

Spontaneous supersymmetry breaking requires an exactly massless Goldstino fermion

ψX . In simple models it originates from a chiral superfield X . The scalar component X

can get a mass from either non-canonical Kähler potential terms, or more generally from

corrections to the X propagator from loops of massive fields.

4.1. The simplest example

Consider, a theory of a single chiral superfield X , with linear superpotential with

coefficient f (with units of mass2),

W = fX, (4.1)

and Kahler potential K = Kcan = XX†. Supersymmetry is spontaneously broken by the

expectation value of the F-component of X . The potential is V = |f |2, independent of

〈X〉, so there are classical vacua for any 〈X〉. The fermion ψX is the exactly massless

Goldstino. The complex scalar X is also classically massless. Note that there is a U(1)R

symmetry, with R(X) = 2. For 〈X〉 6= 0 it is spontaneously broken, and the corresponding

Goldstone boson is the phase of the field X .

4.2. With more general Kahler potential

Consider again (4.1), but with a more general effective Kähler potential K(X,X†).

The potential, V = K−1
XX† |f |2, is non-vanishing as long as the Kähler metric is non-

singular. The fermion ψX is the exactly massless Goldstino. The vacuum degeneracy of

K = Kcan = X†X is lifted by any non-trivial Kähler potential. For example, if near the

origin K = XX†− c
|Λ|2

(XX†)2 + . . ., then there is a stable supersymmetric vacuum at the

origin if c > 0. In this vacuum, the scalar component of X gets mass m2
X ≈ 4c|f |2/|Λ|2.

If c < 0, the origin is not the minimum of the potential.

The macroscopic, low-energy effective field theory must be under control to determine

whether or not supersymmetry is broken. In the example (4.1), a singularity in the Kähler

metric signals the need to include additional light degrees of freedom.
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4.3. Additional d.o.f. can restore supersymmetry

Suppose that an additional field q becomes massless at a particular value of X , which

we can take to be X = 0, so

W = hXqq + fX. (4.2)

For f = 0, there is a moduli space of supersymmetric vacua, labelled by 〈X〉, and q can be

integrated out away from the origin. The theory then looks similar to that of the previous

subsections, except that the effective Kahler potential is singular, with 1/KXX̄ → 0, at

X = 0, corresponding to the additional massless field q there.

Turning on f 6= 0 lifts this moduli space. But unlike the theories of the previous

subsection, the theory now no longer breaks supersymmetry, as there is a supersymmetric

vacuum at X = 0, q =
√

−f/h.
Upshot: to determine whether or not supersymmetry is broken requires that the

macroscopic low-energy theory be correctly identified.

Note that the theory (4.2) has a U(1)R symmetry, with R(X) = 2 and R(q) = 0.

Having an R-symmetry is not a sufficient condition for SUSY breaking. The R-symmetry

is not spontaneously broken, so the vacuum can be, and is, supersymmetric.

4.4. One-loop lifting of pseudo-moduli

We will be interested in the one-loop effective potential for pseudo-moduli (such as

X), which comes from computing the one-loop correction to the vacuum energy

V
(1)
eff =

1

64π2
STrM4 log

M2

Λ2
≡ 1

64π2

(

Trm4
B log

m2
B

Λ2
− Trm4

F log
m2

F

Λ2

)

, (4.3)

where m2
B and m2

F are the tree-level boson and fermion masses, as a function of the

expectation values of the pseudo-moduli.1 In (4.3), M2 stands for the classical mass-

squareds of the various fields of the low-energy effective theory. For completeness, we recall

the standard expressions for these masses. For a general theory with n chiral superfields,

Qa, with canonical classical Kähler potential, Kcal = Q†
aQ

a, and superpotential W (Qa):

m2
0 =

(

W †acWcb W †abcWc

WabcW
†c WacW

†cb

)

, m2
1/2 =

(

W †acWcb 0
0 WacW

†cb

)

, (4.4)

with Wc ≡ ∂W/∂Qc, etc., and m2
0 and m2

1/2 are 2n× 2n matrices.

1 The ultraviolet cutoff Λ in (4.3) can be absorbed into the renormalization of the coupling

constants appearing in the tree-level vacuum energy V0. In particular, STrM4 is independent of

the pseudo-moduli.
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4.5. The basic O’Raifeartaigh model

The basic model has three chiral superfields, X , φ1, and φ2, with classical Kähler

potential Kcl = X†X + φ†1φ1 + φ†2φ2, and superpotential

W = 1
2hXφ

2
1 + hmφ1φ2 − hµ2X. (4.5)

We denote the coefficient f of the linear term as f = −hµ2, with µ having dimensions of

mass, to make the mass dimension explicit, and to simplify expressions. This theory has a

U(1)R symmetry, with R(X) = 2, R(φ1) = 0, R(φ2) = 2. The tree-level potential for the

scalars is, Vtree = |FX |2 + |Fφ1
|2 + |Fφ2

|2, with

FX = h
(

1
2φ

2
1 − µ2

)

, Fφ1
= h (Xφ1 +mφ2) , Fφ2

= hmφ1. (4.6)

Supersymmetry is broken because FX and Fφ2
cannot both vanish. The X and φ2 equa-

tions of motion require that Fφ1
= 0, which fixes 〈φ2〉 = −〈Xφ1/m〉. The minimum of the

potential is a moduli space of degenerate, non-supersymmetric vacua, with 〈X〉 arbitrary.

The minimum of the potential depends on the parameter

y ≡
∣

∣

∣

∣

µ2

m2

∣

∣

∣

∣

(4.7)

For y ≤ 1, the potential is minimized, with value V = |h2µ4|, at φ1 = φ2 = 0 and arbitrary

X . (There is a second order phase transition at y = 1, where this minimum splits to two

minima and a saddle point.) Let us focus on the y ≤ 1 phase.

The fermion ψX is the exactly massless Goldstino. The scalar component of X is a

classically pseudo-modulus. The classical mass spectrum of the φ1 and φ2 field can be

computed from (4.4). For the fermions, the eigenvalues are

m2
1/2 =

1

4
|h|2(|X | ±

√

|X |2 + 4|m|2)2, (4.8)

and for the real scalars the mass eigenvalues are

m2
0 = |h|2

(

|m|2 + 1
2η|µ

2| + 1
2 |X |2 ± 1

2

√

|µ4| + 2η|µ2||X |2 + 4|m|2|X |2 + |X |4
)

, (4.9)

where η = ±1.

The classical flat direction of the classical pseudo-modulus X is lifted by a quantum

effective potential, Veff (X). The one-loop effective potential can be computed from the
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expression (4.3) for the one-loop vacuum energy, using the classical masses (4.8) and (4.9).

The pseudo-modulus X is here treated as a background. It is found that the resulting

effective potential is minimized at 〈X〉 = 0, so we’ll simplify the expressions by just

expanding around this minimum: Veff = V0 + m2
X |X |2 + . . .. The one loop corrected

vacuum energy is

V0 = |h2µ4|
[

1 +
|h2|
64π2

(

y−2(1 + y)2 log(1 + y) + y−2(1 − y)2 log(1 − y) + 2 log
|hm|2
Λ2

)]

.

(4.10)

The dependence on the cutoff Λ can be absorbed into the running h. The one-loop quantum

mass of the classical pseudo-modulus X is given by

m2
X = +

|h4µ2|
32π2

y−1
(

−2 + y−1(1 + y)2 log(1 + y) − y−1(1 − y)2 log(1 − y)
)

. (4.11)

The mass (4.11) indeed satisfies m2
X > 0, consistent with the minimum of the one-loop

potential (4.3) being at the origin. For small supersymmetry breaking, y → 0, we have

m2
X → |h4µ4|

48π2|m|2 , for |µ2| ≪ |m2|. (4.12)

In the limit, y → 1, where the supersymmetry breaking is large, we have

m2
X =

|h4µ2|
16π2

(log 4 − 1) for |µ2| = |m|2. (4.13)

When the supersymmetry breaking mass splittings are small, the effective potential

can alternatively be computed in the supersymmetric low-energy effective theory where we

integrate out the massive fields φ1 and φ2. The effective superpotential of the low-energy

theory is Wlow = −hµ2X , and the effective Kähler potential, Keff (X,X†), gets a one-loop

correction from integrating out the massive fields. This gives the effective potential

V (1) = (Keff XX†)−1|h2µ4|. (4.14)

This way of computing the effective potential is valid only when the supersymmetry break-

ing is small, because the true effective potential generally gets significant additional con-

tributions from terms that involve higher super-derivatives in superspace. The effective

potential (4.3) gives the full answer, whether or not the supersymmetry breaking is small.

In particular, (4.14) only reproduces the effective potential (4.3) to leading order in the

y → 0 limit. For example, (4.14) reproduces the mass (4.12) of the small supersymmetry

breaking limit, but not the mass (4.13) of the large supersymmetry breaking limit.
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5. Dynamical SUSY Breaking

5.1. 3-2 model

The gauge group is SU(3) × SU(2) and we have chiral superfields: Q in (3, 2), ũ

in (3̄, 1), d̃ in (3̄, 1), L in (1, 2). For Wtree = 0, the classical moduli space is given by

arbitrary expectation values of the gauge invariants

X1 = Qd̃L , X2 = QũL , Z = QQũd̃.

We add to the model a tree level superpotential

Wtree = λQd̃L = λX1. (5.1)

The SU(3) dynamics generates

Wdyn =
Λ7

3

Z
.

The full superpotential is W = Wdyn +Wtree. This theory dynamically breaks supersym-

metry. For λ ≪ 1, the vacuum is at large expectation value for the fields, v ∼ Λ3/λ1/7,

where the gauge group is very much Higgsed. In this limit, we have K ≈ Kclassical, so

the Kahler potential is under control. The vacuum energy density at the minimum is

V = M4
S = 3.59λ10/7Λ4

3.

5.2. Modified moduli space example

Consider the SU(Nc) theory with Nf = Nc and add fields Sa
ã , b and b̃ and a superpo-

tential

Wtree = Sa
ãQ̃

ã
iQ

i
a + b det Q̃+ b̃detQ

Classically Q = Q̃ = 0. In the quantum theory we get the effective superpotential

Weffective = Sa
ãM

ã
a + bB̃ + b̃B +X(detM −BB̃ − Λ2Nc)

which breaks SUSY.

Let’s consider this for the case Nf = Nc = 2, where the fundamentals and anti-

fundamentals can be written as 2Nf = 4 fundamentals Qfc, f = 1 . . . 4, c = 1, 2. The

gauge invariants are Mfg = QfcQgcǫ
cd, in the 6 of the global SU(4) ∼= SO(6) flavor
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symmetry. Let us write it as ~M , to show it is in the vector of SO(6). Seiberg’s quantum

moduli space constraint for this case is

~M · ~M = Λ4. (5.2)

We add singlets ~S, also in the 6 of the global flavor SO(6), with superpotential

Wtree = λ~S · ~M. (5.3)

The ~S e.o.m. requires ~M = 0, but that is incompatible with (5.2), so susy is broken. Note

that there is a U(1)R symmetry, with R(M) = 0 and R(S) = 2.

Note that these theories provide examples of non-chiral theories that dynamically

break supersymmetry. How is that compatible with the Witten index? It’s because the

fields ~S are massless. If we add to (5.3) a term ∆W = 1
2
ǫ~S2, we find the expected

Tr(−1)F = 2 supersymmetric, vacua at ~S2 = λ2Λ4/ǫ2. As we take ǫ→ 0, these susy vacua

run off to infinity.

At the classical level, this theory has a pseudo-moduli space of flat directions, with

susy broken. To see that, note that the constraint (5.2) implies that SO(6) → SO(5),

and write a solution as ~M = (
√

Λ4 − ~v2, ~v), where ~v is an SO(5) vector. Similarly, write

~S ≡ (S1, ~s), where ~s is an SO(5) vector. Then (5.3) is

W = λS1

√

Λ4 − ~v2 + λ~v · ~s. (5.4)

The vacua have 〈S1〉 arbitrary, and ~v = ~s = 0, with SUSY broken by FS1
6= 0. There is

a pseudo-flat direction labeled by 〈S1〉. This is the Goldstino superfield, whose fermionic

component is the exactly massless goldstino. The apparent 〈S1〉 pseudomoduli space is

lifted in the quantum theory by (4.3), and the susy breaking vacuum is at ~S = 0. The

complex scalar pseudo-modulus in S1 gets a positive mass-squared there. Note that the

U(1)R symmetry is not spontaneously broken in the susy breaking vacuum, so there is no

massless Goldstone boson.

5.3. An example where susy breaking is an open question

Here is an example that illustrates the need to have the effective theory under control.

Consider SU(2) gauge theory with a single matter field Q in the 4 dimensional representa-

tion of SU(2) (j = 3/2). There is a 1-complex dimensional moduli space of vacua, labeled

by the gauge invariant X = Q4. This moduli space is lifted by the tree-level superpotential

W = λX. (5.5)
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There is an anomaly free U(1)R, with R(Q) = 3/5. (The SU(2) instanton has 10 fermion

zero modes for the field Q, as seen by noting that Trj=3/2T
2
z = 10Trj=1/2T

2
z ). There is a

very non-trivial matching of TrR and TrR3 ’t Hooft anomalies, between the microscopic

SU(2) and Q fields, and the macroscopic field X . This suggests that the effective field

theory in the IR is described by the single composite field X as an IR free field. If so, the

low-energy theory near the origin has Kahler potential

Klow =
α

|Λ|6X
†X + . . . near X = 0 (5.6)

where α is a dimensionless number that we cannot determine, the powers of Λ are on di-

mensional grounds, and the . . . are higher order terms, powers of X†X (far from the origin,

we must recover K ≈ Kcl ∼ (X†X)1/4). Then (5.5) dynamically breaks supersymmetry,

with M4
S ∼ |λ2Λ6|.

Note that (5.5) does not preserve the anomaly free U(1)R symmetry, but there is an

accidental U(1)R symmetry of the IR free low-energy theory, with Raccidental(X) = 0,

which is preserved.

However, the ’t Hooft anomaly matching, suggesting an IR free spectrum and (5.6),

can be a fluke. There are some known examples of misleading ’t Hooft anomaly matching.

The theory at the origin might be an interacting SCFT, in which case (5.6) is incorrect.

In that case, the superpotential (5.5) is an irrelevant perturbation, and flows to zero in the

IR, and susy is certainly unbroken.

It is not yet know which of these two scenarios is correct for this theory.
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Intriligator, lecture 2, problem set

The eqn. numbers refer to those in the lecture 2 notes.

1 Verify, for the case y = 1, that the mass matrices have the eigenvalues (4.8) and (4.9).

If you have access to mathematica, use these in (4.3) to verify (4.13).

2 Show that the superpotential (5.1) preserves a U(1)R symmetry, which is anomaly

free w.r.t. both gauge groups.

3 Show that (5.1) lifts all classical flat directions.

4 Verify the TrR and TrR3 ’t Hooft anomaly matching mentioned before (5.6).
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