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1. Introduction

The topic of these lectures is dynamical supersymmetry breaking. A theory that

dynamically breaks supersymmetry has

1. No explicit SUSY breaking, L = Lsusy.

2. The vacuum spontaneously break susy.

3. The susy breaking is related to some dynamical scale

Λ = Mcutoffe
−c/g(Mcutoff )2 ≪Mcutoff .

As pointed out long ago by Witten, this can naturally lead to hierarchies. E.g. the

weak scale mW can be dynamically generated, by dimensional transmutation, explaining

why mW /mpl ∼ 10−17. Spontaneous SUSY breaking retains the SUSY cancellation of

quadratic divergences to the Higgs mass. Models of dynamical SUSY breaking (DSB) can

be useful for model building, e.g. coupled to the MSSM. Here we will not discuss model

building, but will discuss simple examples and general aspects of DSB.

A question of interest for these lectures is “How generic is dynamical supersymmetry

breaking in the landscape of all possible susy gauge theories, and in the landscape of string

vacua. As will be reviewed, theories with no susy vacua seem to be very non-generic.

However, theories with meta-stable DSB vacua could be much more common.

2. Low energy effective field theory

Supersymmetry breaking is an issue about the IR dynamics of a theory. Asymptoti-

cally free gauge theories are simple, free theories in the UV, but become strongly coupled

in the IR; so it is generally a tough problem to determine their IR dynamics. Asymptotic

freedom says that the microscopic fields interact weakly for energies E ≫ Λ, where Λ is the

dynamically generated scale. The running gauge coupling gets strong for energies E ∼ Λ.

Below that scale, the strong gauge coupling often actually simplifies the problem, by bind-

ing together the strongly interacting microscopic quarks and gluons into more manageable
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macrscopic degrees of freedom. Determining the dynamics at E ∼ Λ is tough, but things

can simplify in the extreme IR, E ≪ Λ.

The IR dynamics is described by a low-energy effective field theory. The problem

is to determine the degrees of freedom of this effective theory, and their interactions.

Sometimes symmetries help. E.g. for non-supersymmetric N = 0 SU(Nc) QCD, with

Nf massless quark flavors, qf ∈ Nc and q̃f ∈ Nc, the SU(Nf )L × SU(Nf )R → SU(Nf )D

SSB of 〈qf q̃
f 〉 ∼ Λ3 implies that there are massless goldstone boson pions in SU(Nf )L ×

SU(Nf )R/SU(Nf )D, interacting via the chiral lagrangian, which is IR free.

For supersymmetric gauge theories with a classical moduli space (for Wtree = 0), the

classical moduli (i.e. the gauge invariant monomials of chiral superfields) are (at least

some of) the light fields of the low-energy effective field theory. Their interactions are

governed by a supersymmetric effective lagrangian, e.g. an effective Kahler potential and

superpotential. The superpotential is tightly constrained by the symmetries (the Kahler

potential is not).

3. Our main example: N = 1 supersymmetric SQCD

As discussed in the tutorial, the gauge group is SU(Nc), with matter fields Qf ∈ Nc

and Q̃f ∈ Nc. There are equal numbers of fundamentals to satisfy the condition of no

gauge anomalies TrT 3 = 0, where the trace is over all matter fields.

Aside: this matter content satisfies the no gauge anomaly condition by being “vector-

like,” meaning that all matter can be given mass terms, here via Wtree = mfg̃Qf Q̃g̃. The

fields Q and Q̃ have opposite sign SU(Nc) generators, so TrT 3 = 0. A “chiral” theory

satisfies the constraint more non-trivially, e.g. SU(5) with matter A ∈ 10 and Q̃ ∈ 5 also

has total gauge anomaly ∼ TrT 3 = 0.

3.1. The symmetries

The gauge and [global] symmetries are

SU(Nc) [SU(Nf)L SU(Nf )R U(1)B U(1)R U(1)A]
Q Nc Nf · 1 1 − Nc

Nf
1

Q̃ N c · Nf −1 1 − Nc

Nf
1

M · Nf Nf 0 2(1 − Nc

Nf
) 2

Λ3Nc−Nf · · · 0 0 2Nf

Weff · · · 0 2 0

(3.1)
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3.2. Anomalies, instanton zero modes and charges

ABJ anomaly of global current: ∂µJ
µ = (#)TrFF̃/32π2. Can compute # from the

triangle diagram, with the global current Jµ at one vertex and the gauge fields at the other

two. Can also compute # from mathematics: index of Dirac operator = number of fermion

zero modes in instanton background. Each SU(Nc) fundamental or anti-fundamental has

# = 1 zero mode. Each SU(Nc) adjoint, i.e. the gauginos, has # = 2C2(G) = 2Nc zero

modes. (E.g. SU(Nc) SYM: the classical U(1)R is explicitly broken, by instantons, to

Z2Nc
(which is then spontaneously broken to Z2 by 〈S〉 = Λ3e2πik/Nc , k = 1 . . .Nc).) Each

SU(Nc) fundamental, e.g. each flavor of Q and Q̃ has 1 zero mode.

The instanton amplitude goes like e−Sinst = e−8π2/g2+iθ and the 1-loop running of

the (holomorphic) gauge coupling is

e−8π2/g2(µ)+iθ =

(
Λ

µ

)b1

=

(
Λ

µ

)3Nc−Nf

,

where b1 is the coefficient of the 1-loop beta-function.

The U(1)R charge assignment in (3.1) is chosen to be anomaly free, which is equivalent

to the fact that the instanton ’t Hooft vertex, which is the vertex with the 2Nc gaugino

zero modes λ and 2Nf quark zero modes, ψQ and ψQ̃ has net U(1)R charge zero (don’t

forget that R(ψQ) = R(Q)− 1, and the entry in the table (3.1) is R(Q)).

The U(1)A symmetry in (3.1) is anomalous, as the 2Nf quark zero modes in the in-

stanton background has net U(1)A charge 2Nf . Rather than thinking of U(1)A as explicitly

broken by instantons, we can think of it as being spontaneously broken by assigning the

instanton charge to the instanton amplitude, i.e. to Λ3Nc−Nf , as in the table (3.1), and

thinking of Λ as the expectation value of a background chiral superfield. Now the effective

superpotential must respect U(1)A too – this is the notion of selection rules, as in the

Stark effect. The effective superpotential must also be holomorphic in Λ3Nc−Nf , since the

dynamics doesn’t know that it’s not a background chiral superfield. This observation is

due to Seiberg.

3.3. The exact dynamical superpotential for SQCD

Using the symmetries (3.1), we find

Wdyn ∝

(
Λ3Nc−Nf

detM

)1/(Nc−Nf )

(3.2)
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For Nf < Nc, this expression makes a lot of sense. Recall that the gauge group is Higgsed

to SU(Nc − Nf ). For Nf = Nc − 1, the gauge group is completely Higgsed, and then

there are finite action (constrained) instantons, and indeed precisely in this case (3.2) is

proportional to the 1-instanton amplitude. For Nf < Nc − 1, (3.2) is instead associated

with gaugino condensation in the unbroken SU(Nc − Nf ) – that is the reason for the

fractional power in (3.2).

For Nf < Nc, the expression (3.2) moreover satisfies the boundary condition that we

know from asymptotic freedom, that Wdyn → 0 for M/Λ2 → ∞. However, for Nf > Nc

(3.2) seemingly does not satisfy this asymptotic freedom boundary condition.

For Nf < Nc, the classical moduli space is lifted non-perturbatively, for Nf ≥ Nc it

is not:

Wdyn =

{
(Nc −Nf )

(
Λ

3Nc−Nf

det M

)1/(Nc−Nf )

Nf < Nc

0 (on Mcl) Nf ≥ Nc.
(3.3)

As you’ll see in the exercise, there is a meaning to the analog of (3.2) for Nf = Nc +1

(and higher) if it is properly interpreted. In any case, as you’ll also see in the exercise the

statement in (3.3) is still strictly correct.

What happens to the singularity of Mcl for Nf ≥ Nc? Answer given by Nati. Seiberg.

For Nf = Nc, the symmetries allow the space Mcl to be smoothed, Mquantum 6= Mcl

(by instantons) in the quantum theory. For Nf > Nc, the symmetries do not allow

any smoothing: Mquantum = Mclassical = singular. The singularity corresponds to new

massless fields there.

For Nf = Nc+1, the quantum theory at the origin is given by the following low energy

effective field theory. There are IR free fieldsMfg̃, B
f , and Ñ g̃, “mesons and baryons,” with

no constraints imposed. The Kahler potential is smooth (and approximately canonical) for

these fields. Evidence for this is the non-trivial ’t Hooft anomaly matchings satisfied by

these fields. They interact via the superpotential

Wdyn = −
1

Λ2Nc−1
(Mfg̃B

f B̃g̃ − detM), (3.4)

which is irrelevant in the IR.
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